Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
PLUS2(s1(X), Y) -> S1(plus2(X, Y))
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> ACTIVATE1(Z)
2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> ACTIVATE1(Z)
SQUARE1(X) -> TIMES2(X, X)
PI1(X) -> FROM1(0)
2NDSPOS2(s1(N), cons2(X, Z)) -> 2NDSPOS2(s1(N), cons22(X, activate1(Z)))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
PI1(X) -> 2NDSPOS2(X, from1(0))
PLUS2(s1(X), Y) -> PLUS2(X, Y)
TIMES2(s1(X), Y) -> PLUS2(Y, times2(X, Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
TIMES2(s1(X), Y) -> TIMES2(X, Y)
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
2NDSNEG2(s1(N), cons2(X, Z)) -> 2NDSNEG2(s1(N), cons22(X, activate1(Z)))
2NDSNEG2(s1(N), cons2(X, Z)) -> ACTIVATE1(Z)
2NDSPOS2(s1(N), cons2(X, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
PLUS2(s1(X), Y) -> S1(plus2(X, Y))
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> ACTIVATE1(Z)
2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> ACTIVATE1(Z)
SQUARE1(X) -> TIMES2(X, X)
PI1(X) -> FROM1(0)
2NDSPOS2(s1(N), cons2(X, Z)) -> 2NDSPOS2(s1(N), cons22(X, activate1(Z)))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
PI1(X) -> 2NDSPOS2(X, from1(0))
PLUS2(s1(X), Y) -> PLUS2(X, Y)
TIMES2(s1(X), Y) -> PLUS2(Y, times2(X, Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
TIMES2(s1(X), Y) -> TIMES2(X, Y)
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
2NDSNEG2(s1(N), cons2(X, Z)) -> 2NDSNEG2(s1(N), cons22(X, activate1(Z)))
2NDSNEG2(s1(N), cons2(X, Z)) -> ACTIVATE1(Z)
2NDSPOS2(s1(N), cons2(X, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 4 SCCs with 11 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__from1(x1)  =  x1
n__s1(x1)  =  n__s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__from1(x1)  =  n__from1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
              ↳ QDP
                ↳ QDPAfsSolverProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS2(s1(X), Y) -> PLUS2(X, Y)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

PLUS2(s1(X), Y) -> PLUS2(X, Y)
Used argument filtering: PLUS2(x1, x2)  =  x1
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES2(s1(X), Y) -> TIMES2(X, Y)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

TIMES2(s1(X), Y) -> TIMES2(X, Y)
Used argument filtering: TIMES2(x1, x2)  =  x1
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
2NDSNEG2(s1(N), cons2(X, Z)) -> 2NDSNEG2(s1(N), cons22(X, activate1(Z)))
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
2NDSPOS2(s1(N), cons2(X, Z)) -> 2NDSPOS2(s1(N), cons22(X, activate1(Z)))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

2NDSNEG2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
2NDSPOS2(s1(N), cons22(X, cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
Used argument filtering: 2NDSNEG2(x1, x2)  =  x1
s1(x1)  =  s1(x1)
2NDSPOS2(x1, x2)  =  x1
n__s1(x1)  =  n__s1(x1)
activate1(x1)  =  x1
n__from1(x1)  =  n__from
from1(x1)  =  from
cons2(x1, x2)  =  cons
Used ordering: Quasi Precedence: [s_1, n__s_1] [n__from, from, cons]


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG2(s1(N), cons2(X, Z)) -> 2NDSNEG2(s1(N), cons22(X, activate1(Z)))
2NDSPOS2(s1(N), cons2(X, Z)) -> 2NDSPOS2(s1(N), cons22(X, activate1(Z)))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, Z)) -> 2ndspos2(s1(N), cons22(X, activate1(Z)))
2ndspos2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(posrecip1(Y), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, Z)) -> 2ndsneg2(s1(N), cons22(X, activate1(Z)))
2ndsneg2(s1(N), cons22(X, cons2(Y, Z))) -> rcons2(negrecip1(Y), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.